Публикации "Оптическая астрономия"

Всероссийский сборник статей и публикаций института развития образования, повышения квалификации и переподготовки.


Скачать публикацию
Язык издания: русский
Периодичность: ежедневно
Вид издания: сборник
Версия издания: электронное сетевое
Публикация: "Оптическая астрономия"
Автор: Мамиева Диана Аслановна

Тема: Оптическая АстрономияНет ничего столь удаленного от нас, чего бы мы не смогли открыть. Рене ДекартИзучение небесных тел
  • Солнце и звезды представляют собой огромные шарообразные тела из горячего вещества, в результате чего излучают электромагнитные волны различной длины- от гамма-лучей до длинных радиоволн.
  • Планеты и их спутники отражают солнечный свет, следовательно излучают инфракрасные лучи и радиоволны.
  • Разреженные газовые туманности- излучают электромагнитные волны строго определенной частоты.
  • Для изучения небесных тел созданы астрономические инструменты: Телескопы- оптические (наблюдение в световых лучах),
  • - радиотелескопы (прием радиоволн).Основное назначение телескопов состоит в том, чтобы собрать как можно больше световой энергии от небесного тела и различить как можно меньшие детали. Объектив телескопа, имеет значительные размеры и воспринимает световой поток, концентрируя его, тем самым позволяет видеть слабые небесные объекты, недоступные невооруженным глазом.Телескопы существующие в настоящее: наземные и орбитальные.Наземные- радиотелескопы.Оптические телескопы- Существует два основных вида оптических телескопов- линзовые или рефракторы, и зеркальные или рефлекторы. Зеркально-линзовые оптические системы, или катадиоптрические системы, — это разновидность , содержащих в качестве оптических элементов как  так и . Зеркально-линзовые системы нашли применение в , ранних  и , а также в  и сверхсветосильных Рефле́ктороптический телескоп, использующий в качестве светособирающего элемента . Первый рефлектор был построен в конце 1668 года. Это позволило избавиться от основного недостатка использовавшихся тогда — значительной .Радиотелеско́п для приёма собственного   , и) и их , таких как: , . Радиотелескопы предпочтительно располагать далеко от главных , чтобы максимально уменьшить от ,, и др. излучающих устройств. Размещение в или ещё лучше защищает её от влияния техногенных .Основным прибором, который используется в астрономии для наблюдения небесных тел, приёма и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele — далеко и skopéo — смотрю.Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис. 1.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. С помощью телескопов и современных приёмников излучения возможно обнаружить звёзды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооружённым глазом.Чем меньше размер изображения светящейся точки (звезды), которое даёт объектив телескопа, тем лучше его разрешающая способность. Если расстояние между изображениями двух звёзд меньше размера самого изображения, то они сливаются в одно. Вследствие дифракции изображение звезды будет не точкой, а ярким пятном — дифракционным диском, угловой диаметр которого равенгде λ — длина световой волны, a D — диаметр объектива телескопа, 206 265 — число секунд в радиане. У школьного телескопа, диаметр объектива которого составляет 60 мм, теоретическая разрешающая способность будет равна примерно 2". Напомним, что это превышает разрешающую способность невооружённого глаза (в среднем) в 60 раз. Реальная разрешающая способность телескопа будет меньше, поскольку на качество изображения существенно влияет состояние атмосферы, движение воздуха.Если в качестве объектива телескопа используется линза, то такой телескоп называется рефрактором (от лат. refracto — преломляю), а если вогнутое зеркало, — то рефлектор (reflecto — отражаю).Помимо рефракторов и рефлекторов в настоящее время используются различные типы зеркально-линзовых телескопов.У небольших телескопов объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния, она даёт его уменьшенное, перевёрнутое и действительное изображение. Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звёзд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.Если изображение, даваемое объективом, находится вблизи фокальной плоскости окуляра, увеличение, которое обеспечивает телескоп, равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра:Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звёзды из-за их колоссальной удалённости всё равно видны в телескоп как светящиеся точки.Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива. При визуальных астрономических наблюдениях обычно используют увеличения не более 100 раз. Применять большие увеличения мешает атмосфера Земли. Движение воздуха, незаметное невооружённым глазом (или при малых увеличениях), приводит к тому, что мелкие детали изображения становятся нерезкими, размытыми. Это мешает и современным наблюдениям с фотоэлектронными приёмниками света. Поэтому астрономические обсерватории, на которых используются крупные телескопы, размещаются в районах с хорошим астроклиматом: большим количеством ясных дней и ночей, с высокой прозрачностью и стабильностью атмосферы, на высоте нескольких километров над уровнем моря.Современный телескоп представляет собой сложное устройство, которое имеет предельно точную оптику малых и больших размеров, наилучшие из существующих приёмники излучения и обширный комплекс научной и обслуживающей аппаратуры. Все наиболее крупные современные телескопы — это телескопы-рефлекторы.Крупнейший в России телескоп-рефлектор имеет зеркало диаметром 6 м, отшлифованное с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Его масса около 40 т. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчуке кая в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.ПредысторияКто и когда изобрел телескоп до сих пор точно неизвестно, но предполагается, что это был голландский очковый мастер Иоанн Липперсгей.Именно он впервые в 1607 году в Гааге показал прибор, который больше был похож на современную подзорную трубу, а такое изобретение давно ждали мореплаватели. Только в выдаче патента изобретателю отказали, так как точно такие же приборы уже были у Захария Янсена из Мидделбурга и Якоба Метиуса из Алкмара.Задолго до этого изобретения самые первые чертежи были сделаны Леонардо да Винчи еще в 1509 году. Это были простые приборы, похожие на телескопы, с одной и двумя линзами.Изобретение первого телескопа рефрактораПолноценный прибор для наблюдения космических объектов был специально изобретен известным ученым Галилео Галилеем в 1609 году. Первый прибор изобретателя имел трехкратное, второй — 8-кратное, а третий — 32-кратное увеличение. При этом, пользуясь такими несовершенными телескопами, Галилео Галилей сделал много важных открытий, связанных с Космосом. В частности, он впервые рассмотрел:
  • горы и кратеры на Луне;
  • звезды Млечного Пути;
  • пятна на Солнце;
  • четыре спутника Юпитера;
  • кольца Сатурна.
  • Настоящий телескоп получил свое название не сразу. В 1611 году известный математик Иоаннис Димисианос из Греции предложил данный прибор называть телескопом. Так началась эра рефрактора в астрономии, открытая Галилео Галилеем.Изобретение рефлектора НьютономТелескоп постоянно пытались усовершенствовать, но не удавалось изготовить линзы больших размеров. Из-за этого приборы были длинными, неподъемными и с узким полем зрения. К ним в то время смогли только изобрести штативы.Во второй половине ХVII века Христиан Гюйенс сделал телескоп длиной 7 метров, который увеличивал в 100 раз, при этом апертура была примерно 15 см. Сегодня примерно такой же прибор относят к любительским и рекомендуют начинающим астрономам. Телескоп не один раз пытались усовершенствовать. К концу ХVII века был собран телескоп длиной 70 метров! Но как им управлять и настраивать его? При этом даже обычный ветер был помехой для наблюдений. Великие умы прилагали все усилия, чтобы улучшить его. Совершенно новое изобретение стало принадлежать Исааку Ньютону. Его прибор позволял собирать и фокусировать лучи с помощью вогнутого зеркала. Таким образом, рефрактор Галилея «превратился» в рефлектор Ньютона. Здесь главной задачей было сделать для прибора зеркало хорошего качества. Для него Ньютон применил сплав меди, олова и мышьяка, чем улучшил изображение в несколько раз, при этом добился 40-кратного увеличения. Телескоп так понравился королю, что Ньютон сразу стал членом Королевского общества. Это шел 1704 год, а значит, начало ХVIII века стало новой эрой  Ньютона. Его самодельный телескоп до сих пор хранится в лондонском музее астрономии. Телескопы стали удобнее и компактнее (чаще не более 2 метров в длину), но все равно громоздкими. Но хотя их можно было уже носить и брать с собой, куда угодно.История развития рефрактора и рефлектораТелескоп совершенно другого типа разработали в конце ХVIII века. Француз Кассегрен предложил вместо одного зеркала в приборе использовать два. Но свою идею он не мог воплотить в жизнь, так как на тот момент не было возможности сделать нужные зеркала. Его изобретение реализовали в наше время в мощном телескопе Хаббл. В нем установлены зеркала, работающие по принципу, который описал КассегренК сожалению, рефлекторы оказались дорогими, кроме этого, основные элементы — металлические зеркала — со временем теряли яркость и становились тусклыми. Поэтому продолжал совершенствоваться. В 1758 году были изобретены два совершенно новых сорта зеркал: крон и флинт. Их удачно применил Дж. Доллонд в своем телескопе с двухлинзовой системой. Такой прибор впоследствии назвали доллондовым. Успех рефрактора был однозначным!Но астрономы-любители не забыли о рефлекторах. Так, английский музыкант Вильям Гершель собрал собственный телескоп-рефлектор и в 1781 году совершил потрясающее открытие: в космическом пространстве он нашел новую планету — Уран, чем удивил всех. Такой успех побудил любителя астрономии усовершенствовать телескоп и сделать его большего размера. Им был создан самый большой на то время рефлектор с диаметром зеркала 122 см. В результате были открыты еще 2 спутника Сатурна.За Гершелем последовал английский лорд Росс, который собрал рефлектор с диаметром зеркала 182 см. Он сразу открыл неизвестные ранее спиральные туманности. Но и эти телескопы были несовершенны: тяжелые, с малым отражением света, а зеркала в них быстро тускнели.Только в 1856 году французский физик Леон Фуко применил зеркало из посеребренного стекла. Этот опыт оказался удачным.Русские ученые тоже не остались в стороне, они принимали участие в новых изобретениях: Я.В. Брюс разрабатывал металлические зеркала, М.В.Ломоносов (также как и Гершель) работал над новой конструкцией, которая уменьшала бы потери света.Только в конце ХIХ века стали выпускать линзы со стеклянной поверхностью, обработанной серебром. Такие линзы отражали до 95% светового потока, что стало настоящим прорывом в области телескопостроенияЛ.Фуко создал рефлектор, применив параболическое зеркало, которое по тем временам было просто громадное 91 см.В ХХ веке телескопы с огромными зеркалами стали не редкость. Например, прибор с диаметром 256 см установлен в обсерватории Моунт-Вильсон, а гигантский рефлектор с диаметром в 2 раза больше — в Калифорнии.Телескопы ХХ векаБлагодаря открытиям, сделанным в прошлых столетиях, и разработкам ХХ века телескопы вышли на совершенно иной уровень. Они стали давать качественное изображение и точную информацию о космических объектах. Все это сопровождается компьютерным ведением. Вот некоторые из них.
  • В 1976 году советским ученым удалось смонтировать на Северном Кавказе телескоп, который получил название БТА — Большой Телескоп Азимутальный. В нем установлено шестиметровое 42-тонное зеркало. С помощью прибора сделано много важных открытий в области взаимодействия и эволюции Галактик. На тот момент это был единственный гигантский телескоп.
  • Космический телескоп «Хаббл» — орбитальная обсерватория, имеющая все необходимое оборудование для астрономических наблюдений и исследований. Так как земная атмосфера не создает ему помех, снимки, сделанные им в Космосе, являются самыми качественными. Он выведен на орбиту в 1990 году и его планируют заменить после 2020 года.
  • Два самых эффективных телескопа-близнеца KECK 1 и KECK 2 размером с 8-этажный дом установлены в 1993 - 1996 году на горе потухшего вулкана Мануа Кеа. Его угловые разрешения высокой точности позволили открыть экзопланеты и исследовать их.
  • Современные телескопыУ современных телескопов выросли размеры зеркал, точность изготовления, возросло количество диапазонов длин волн, в которых ведется наблюдение. Обсерватории работают в инфракрасном, ультрафиолетовом, рентгеновском, терагерцовом и других диапазонах. Они оснащены уникальными компьютерными программами, позволяющими накапливать данные и анализировать их.
  • Большой Канарский телескоп-рефлектор установлен в 2007 году на вулкане Мучачос на высоте 2400 метров. Он позволяет изучать наиболее отдаленные объекты в космическом пространстве.
  • В чилийской пустыне Атакама, расположенной на высоте 5100 метров над уровнем моря, где крайне сухой воздух, с 2005 года работает детектор CONDOR. С его помощью Вселенную изучают в терагерцовом диапазоне. 
  • Дорогостоящий комплекс из радиотелескопов, расположенный также в пустыне Атакама в Чили, начал научные наблюдения с 2011 года. С его помощью ученые попытаются воссоздать эволюционные процессы во Вселенной, в том числе зарождение звезд и Галактик. 
  • Данные телескопы стали настоящим прорывом в изучении Космоса. Они позволяют заглянуть в самые отдаленные уголки Вселенной, разгадать загадки далеких звезд, планет и Галактик.Какими бы гигантскими ни были , простых любителей астрономии все равно будет интересовать свой личный прибор, поэтому предлагаем заглянуть на страницы нашего сайта и выбрать оптимальный вариант телескопа лично для себя или в подарок близкому человеку!