Публикации Теория эволюции и генетика

Всероссийский сборник статей и публикаций института развития образования, повышения квалификации и переподготовки.


Скачать публикацию
Язык издания: русский
Периодичность: ежедневно
Вид издания: сборник
Версия издания: электронное сетевое
Публикация: Теория эволюции и генетика
Автор: Екатерина Александровна Хосперс

Теория эволюции и генетика Оглавление.
  • Представления о развитии живой природы в додарвиновский период. Эволюционное учение Ж.Б.Ламарка. Его оценка с современных позиций.
  • Генотипический состав популяции. Элементарное эволюционное явление.
  • Характеристика мутационного процесса как элементарного фактора эволюции.
  • Онтогенез – основа филогенеза. Онтогенетическая дифференцировка.
  • Список литературы.
  • Представления о развитии живой природы в додарвиновский период. Эволюционное учение Ж.Б.Ламарка. Его оценка с современных позиций.
  • История эволюционного учения берет начало в античных философских системах, идеи которых, в свою очередь, коренились в космологических мифах. Толчком к признанию эволюции научным сообществом стала публикация книги Чарльза Дарвина «Происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь», позволившая полностью переосмыслить идею эволюции, подкрепив её опытными данными многочисленных наблюдений. Синтез классического дарвинизма с достижениями генетики привёл к созданию синтетической теории эволюции. Эволюционные идеи в античности Представления об изменяемости окружающего мира, и в том числе живых существ, впервые сложились у ряда античных философов. Среди них Гераклит Эфесский (конец VI - начало V в. до н.э.) известен как создатель концепции вечного движения и изменяемости всего существующего. По представлениям Эмпедокла (ок. 490 - ок. 430 до н.э.), организмы сформировались из первоначального хаоса в процессе случайного соединения отдельных структур, причем неудачные варианты (уроды) погибали, а гармоничные сочетания сохранялись (своего рода наивные представления об отборе как направляющей силе развития). Автор атомистической концепции строения мира Демокрит (ок. 460 - ок. 370 До н.э.) полагал, что организмы могут приспосабливаться к изменениям внешней среды. Наконец, Тит Лукреций Кар (ок. 95-55 До н.э.) в своей знаменитой поэме "О природе вещей" высказал мысли об изменяемости мира и самозарождении жизни.[2] Из философов Античности наибольшей известностью и авторитетом среди натуралистов в последующие эпохи (в частности, в период Средневековья) пользовался Аристотель (384-322 до н.э.) Аристотель не поддерживал, во всяком случае в достаточно ясной форме, идею изменяемости окружающего мира. Однако многие его обобщения, сами по себе укладывавшиеся в общую картину неизменности мира, сыграли в дальнейшем важную роль в развитии эволюционных представлений. Таковы мысли Аристотеля о единстве плана строения высших животных (сходство строения соответствующих органов у разных видов было названо Аристотелем "аналогией"), о постепенном усложнении ("градации") строения в ряду организмов, о многообразии форм причинности (Аристотель выделял 4 ряда причин: материальную, формальную, производящую, или движущую, и целевую). Эпоха Поздней античности и особенно последовавшая за ней эпоха Средневековья стали временем затянувшегося почти на полторы тысячи лет застоя в развитии естественно-исторических представлений. Господствовавшие догматические формы религиозного мировоззрения не допускали идеи изменяемости мира. Соответствующие представления античных философов были преданы забвению. Возможности для развития эволюционных идей появились лишь после эпохи Возрождения (XV-XVI вв.), когда европейская наука сделала значительные шаги вперед в познании окружающего мира. Средние века и эпоха Возрождения.  В средние века развитие науки происходило крайне медленно; опытное изучение природы преследовалось. Но сведения о растениях и животных, по анатомии человека и медицине все же накапливались. В XII—XIII вв. возникли первые университеты, которые и стали центрами развития естественнонаучных знаний. В XV— XVI вв. появилась настоятельная потребность в естественнонаучных знаниях, в изучении природных богатств, потому что возникавшая капиталистическая промышленность нуждалась в сырье, а население растущих городов — в продуктах питания. С открытием новых стран и островов в Европу стали привозить неизвестные до того времени продовольственные, лекарственные, декоративные, пряные и другие растения, а также богатые коллекции животных. Во многих городах были созданы ботанические сады, оранжереи, музеи. В результате накопился огромный материал по описанию растений и животных. Изобретение микроскопа в начале XVII в. привело к открытию микроорганизмов, клеточного строения организмов, спермато-10 зондов и яйцеклеток. Успешно развивались и точные науки.[4] Метафизические представления о природе. Наиболее характерным для эпохи Возрождения, а также для XVII—-XVIII вв. было так называемое метафизическое мировоззрение. Сущность метафизического мировоззрения заключается в представлении об абсолютной неизменности всей природы. Неизменны планеты и пути их движения. Вечно существует без изменений Земля с ее материками, реками, горами, климатом, видами растений и животных. Все явления природы считались как бы застывшими; их изучали без связей между собой, изолированно друг от друга. Для метафизического мировоззрения характерно также утверждение, что в природе существует изначальная целесообразность.Под выражением «изначальная целесообразность» понималось соответствие организма или органа той цели, которая была якобы поставлена для него творцом с самого начала, т. е. при сотворении мира. Представления о неизменности всей природы и изначальной целесообразности поддерживались правящими кругами и церковью. Карл Линней и его труды. В XVII—XVIII вв. ботаника и зоология продолжали развиваться в описательном направлении. Возникла настоятельная необходимость привести накопленные конкретные знания в систему. Первые попытки вылились в перечисление видов по алфавиту, что не могло дать никакой системы. Начались поиски таких признаков у растений и животных, по которым можно было бы их группировать и распределять по степени сложности строения. [3] Значение трудов Линнея в том, что он предложил простую систему растений и животных, применил ясный и удобный принцип двойных названий, описал около 1200 родов и более 8000 видов растений. Он провел реформу в ботаническом языке, установив до 1000 терминов, многие из которых предложил впервые. Линней и его последователи провели огромную работу по изучению и систематизации разрозненного фактического материала, накопленного их предшественниками. Так была заложена научная основа для дальнейшего изучения природыРанние эволюционные воззренияК концу XVIII в. во многом изменились общественно-политические взгляды, особенно во Франции. Рост революционных идей, французская революция, развитие капиталистических форм производства, научные открытия — все это подрывало старые, метафизические представления о неизменности природы и общества. В произведениях многих ученых появились высказывания о происхождении современных видов растений и животных от далеких предков. Во Франции такие идеи принадлежали Жоржу Бюффону, в Англии — Эразму Дарвину (деду Чарльза Дарвина). В начале XIX в. замечательный французский ученый Жан Батист Ламарк предложил первую эволюционную теорию. Ж. Бюффон является одним из ранних представителей трансформизма – концепции об изменении и превращении видов. Он впервые высказал «историческую» точку зрения относительно неживой и живой природы, а также попытался связать историю Земли с историей органического мира. По его взглядам жизнь зародилась в воде, и первые живые существа образовались из мельчайших частиц живого вещества – органических молекул, возникших из неорганической природы. Ж. Бюффон впервые попытался обстоятельно рассмотреть проблему влияния на организмы внешней среды, он пишет об изменяющемся влиянии климата, влиянии пищи, продолжительности времени. Представителем позднего трансформизма является Э.Ж. Сент-Илер, он предложил единый план строения животных, создал учение о гомологии, отстаивал «принцип о взаимосвязи, взаимоотношениях органов», установил принцип «равновесия органов». Принцип коррелятивного соотношения органов животного установил Ж. Кювье, этот принцип корреляций отражал объективно существующую взаимозависимость органов и систем в организме, и открытие Ж. Кювье имело большое научное значениеВ отличие от большинства натуралистов XVIII в., занимавшихся описанием и классификацией видов растений и животных, Ламарк (1744—1829) создал эволюционную теорию, которую изложил в труде «Философия зоологии» (1809).[2] Ламарк отрицал метафизические идеи о постоянстве и неизменности видов. Он утверждал, что виды изменяются, но крайне медленно и потому незаметно. Это положение снимало самый веский аргумент, выдвигавшийся сторонниками постоянства видов в защиту их взглядов: отсутствие видимых изменений видов за последние 5—6 тыс. лет. Занятия систематикой привели Ламарка к выводу об отсутствии резких границ между видами. Незаметными переходами виды связаны между собой. Часто бывает трудно разграничить некоторые виды дневных и ночных бабочек, мух, жуков-усачей или виды осок, молочаев, вересков и т. д. В результате живая природа представлялась Ламарку как ряды непрерывно изменяющихся особей, которые человек лишь в воображении объединяет в виды. Так, смело отвергнув идею постоянства видов, Ламарк стал ошибочно отрицать сам факт наличия их в природе; в его представлении отрицание неизменности видов слилось с отрицанием их реальности. Однако впоследствии он пришел к правильному пониманию вида: виды действительно существуют в природе, но не вечно, а в течение определенных промежутков времени, т. е. они относительно постоянны. Располагая организмы в системе по возрастающей сложности строения, Ламарк впервые в науке пришел к важному эволюционному выводу: органический мир развивался от простейших форм жизни к высшим по естественным законам. Он первым употребил термины «родство», «родственные связи» для обозначения единства происхождения органического мира. Проделанная Ламарком работа по систематике растений и животных привела его к мысли, что организмы следует располагать в системе как ступени лестницы, изображающей исторический путь развития живой природы от низкоорганизованных форм жизни к высокоорганизованным. В своей системе Ламарк разделил животный мир на позвоночных и беспозвоночных и сгруппировал их в 14 классов. Эти классы он разместил на шести ступенях: на низшей — инфузории и полипы, на высшей — птицы и млекопитающие. Каждая следующая, более высокая ступень характеризуется усложнением в строении основных систем органов — нервной и кровеносной. Ступенчатый ряд усложнения организации существует « в растительном мире.Постепенное повышение организации живых существ в процессе эволюции Ламарк назвал градацией (восхождение — лат.). Принцип градации, выдвинутый Ламарком, правильно отображает путь исторического развития живой природы от простого к сложному, от низшего к высшему. В этом большая заслуга ученого. Но Ламарк не смог материалистически объяснить причины градации. По его представлениям, все живые существа обладают врожденным внутренним стремлением к совершенствованию своей организации, к прогрессу как высшей цели, изначально заложенной в них. В понимании Ламарка историческое развитие от простого к сложному, т. е. градация, является результатом внутреннего стремления организмов к прогрессу: градация — непреложный закон природы, установленный творцом. Таким образом, движущая сила эволюционного процесса, по мнению Ламарка, — внутреннее стремление организмов к прогрессу. Другая движущая сила эволюционного процесса — влияние внешней среды на организмы, благодаря которому в природе наблюдается множество отклонений, нарушающих правильность градации. Так образуются различные виды в пределах одной ступени организации, приспособленные к конкретным условиям жизни в окружающей внешней среде Внешняя среда (тепло, свет, влага и пр.) оказывает прямое воздействие на растения и низших животных. Ламарк привел такие примеры. Если весна была очень сухой, то луговые травы плохо растут; весна с чередованием теплых и дождливых дней вызывает буйный рост тех же трав. Попадая из естественных условий в сады, растения сильно изменяются: одни теряют шипы и колючки, у других изменяется форма стебля. Все организмы, полагал Ламарк, под воздействием внешней среды приобретают только полезные в данных условиях признаки. Любое изменение во внешней среде обязательно вызывает у организмов только адекватные изменения, т. е. такие, которые соответствуют изменившимся условиям и поэтому полезны для живых существ. При длительном воздействии новых условий среды адекватные им изменения организмов передаются по наследству последующим поколениям. Способность организмов целесообразно отвечать на воздействия внешней среды Ламарк считал врожденным свойством. Вот примеры Ламарка: плавательная перепонка между пальцами у водоплавающих птиц образовалась благодаря растягиванию кожи. Отсутствие ног у змей он объясняет привычкой вытягивать тело при ползании по земле, не употребляя конечностей; длинные передние ноги и шею у жирафы — постоянными усилиями дотянуться до листьев на деревьях. Ламарк правильно отмечал воздействие условий внешней среды как причину изменений растений и животных. Но его объяснение многообразия видов и их приспособленности к конкретным условиям неверно: обязательное появление только полезных изменений и наследование приобретенных признаков не подтвердилось дальнейшими исследованиями ученых. Таким образом, Честь создания первой целостной теории происхождения видов на основании естественных законов принадлежит Ламарку. Он противопоставил революционные идеи изменяемости и исторического развития живой природы реакционной идее постоянства и неизменности.Ламарк правильно представлял общую картину исторического развития органического мира.Однако для решения вопроса о движущих силах эволюционного процесса науке недоставало материалов; их не могло дать и сельское хозяйство Франции, стоявшее на низком уровне развития. И вопрос о движущих силах эволюции был решен Ламарком неправильно. Внутреннее стремление к прогрессу, якобы заложенное у организмов самой природой, неизбежно приводит к признанию каких-то высших, сверхъестественных сил, творца. Утверждение о врожденной способности организмов изменяться лишь адекватно изменениям среды и приобретать только полезные признаки связано с представлением об изначальной целесообразности. Таким образом, доказательства эволюционной теории, выдвинутые Ламарком, оказались несостоятельными и она не была принята.[4]
  • Генотипический состав популяции. Элементарное эволюционное явление.
  • Основу современной эволюционной теории составляет изучение популяционной генетики - отрасль генетики, изучающая наследственную преемственность в группах организмов одного вида, которые называются популяциями.Гены действуя независимо или совместно с факторами внешней среды определяют фенотипические признаки организмов. Фенотипы, приспособленные к условиям данной среды, сохраняются отбором, тогда как неадаптивные фенотипы подавляются и в конце концов элиминируются. Естественный отбор, влияя на выживаемость отдельных особей с данным фенотипом, тем самым определяет судьбу их генотипа. Однако лишь общая генетическая реакция всей популяции определяет выживание данного вида. Для истории данного вида судьба отдельного организма не имеет существенного значения. Отдельно взятый организм имеет неизменный генотип и время его жизни ограничено, тогда как популяция, представляет собой непрерывный ряд поколений генетическая структура которых может меняться, то есть эволюционировать. [1]Важное значение в популяционных исследованиях имеет понятие генофонд, сформулированное А.С. Серебровским в 1927 году. Генофонд слагается из всего разнообразия генов и аллелей, имеющихся в популяции.От других направлений популяционная генетика отличается своей методологией - ее интересует не столько признак, сколько его наследственная обусловленность и вероятность появления (или исчезновения) в череде поколений. Главными методологическим подходами популяционной генетики, оказываются выяснение статики и динамики частот тех или иных аллелей, и генотипического состава природных группировок особей разного ранга. В силу специфики методологии генетика популяции является наиболее формализованной областью исследований. Мы познакомимся лишь с теоретическими основами данной отрасли, которые наименее затронуты формализацией.Особенности организации генетического кода и его передачи по наследству, а также характер реализации генетической информации в онтогенезе определяют генетическую уникальность каждой особи. Генетическая уникальность особей определяет, в свою очередь, генетическую гетерогенность (и уникальность) любой природной группировки особей, в том числе и популяции. Генетическая гетерогенность популяции первично возникает за счет непрерывно текущего мутационного процесса — поставщика новых наследственных изменений, и, поддерживается и усиливается за счет процессов комбинации уже существующего в каждой природной популяции генетического материала. Это происходит под действием различных эволюционных сил — естественного отбора, случайных колебаний потока аллелей внутри и между популяциями в пространстве, или во времени.[14]Одним из проявлений генетической гетерогенности является внутрипопуляционный генетический полиморфизм — длительное существование в популяции двух или более генетически различных форм в таких соотношениях, что частоту даже наиболее редкой из них нельзя объяснить только возникновением новых мутаций.В силу особенностей организации живого фенотип не жестко соответствует генотипу. Это определяется, во-первых, тем, что наследуются не признаки как таковые, а спектр возможностей развития в зависимости от наличных условий среды (т.е. наследуется норма реакции генотипа). Во-вторых, это определяется тем, что на реализацию каждого признака в онтогенезе влияют многие гены (любой ген оказывает влияние не на один, а на многие признаки). В результате в природных популяциях на частоты фенотипов оказывают влияние как абиотическая, так и все типы биотической среды.Все это определяет отсутствие жесткого соответствия генотипа и фенотипа и ограничивает возможность быстрого определения генетической структуры популяции по разовому соотношению фенотипов. Такая возможность возникает лишь при проведении специальных трудоемких генетических исследований, связанных с анализом фенотипических признаков в серии скрещиваний, т.е. в чреде поколений. Из-за очевидной невозможности собственно генетического исследования, сколько-нибудь большого числа природных популяций возникает одна из главных методологических дилемм популяционной биологии: для любого глубокого популяционного исследования необходимо знание генетической структуры и процессов, текущих в популяции, а это знание, казалось бы, невозможно получить при обычном изучении фенотипов — том типе исследований, который только и доступен при широком исследовании природных популяций. Решение этой дилеммы в 70—80-е годы найдено на путях изучения маркёров генотипического состава популяций, либо особенностей белковых молекул, выявляемых посредством электрофореза, либо морфо-физиологических, дискретных признаков - фенов.Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащим к одной и той же природной популяции или виду.Генетическая структура популяции обычно характеризуется частотами аллелей (сочетанием количественных соотношений аллелей одного локуса) и частотами генотипов (количественные соотношения генотипов, контролируемые аллелями одного гена).Для изучения изменчивости какого-либо признака, например, роста у человека, необходимо измерить этот признак у большого числа индивидуумов в изучаемой популяции. Результаты измерений представляются в форме гистограммы, отражающей распределение частот различных вариантов этого признака в популяции.Изучение фенотипических различий в любой большой популяции показывает, что существует две формы изменчивости - дискретная и непрерывная.[1]Дискретная изменчивость. Некоторые признаки представлены в популяции ограниченным числом вариантов. В этих случаях различие между особями четко выражены, а промежуточные формы отсутствуют.Признаки, для которых характерна дискретная изменчивость, обычно контролируются одним или двумя главными генами, у которых может быть два или несколько аллелей, и внешние условия относительно мало влияют на их фенотипическое проявление.Непрерывная изменчивость. По подавляющему большинству признаков в популяциях наблюдается полный ряд переходов от одной крайней форма проявления признака к другой без каких либо разрывов.Наиболее яркими примерами служат такие признаки как масса, линейные размеры, форма и окраска организма. Частотное распределение по признаку, проявляющему непрерывную изменчивость, в норме соответствует кривой нормального распределения. Большинство членов популяции попадают в среднюю часть кривой, а на ее концах, соответствующим двум крайним значениям данного признака, находится очень малое число особей. Такие признаки обусловлены совместным воздействием многих генов и факторов среды. Каждый из этих генов в отдельности оказывает небольшое влияние на фенотип, но совместно они создают значительный эффект.Согласно классической гипотезе подавляющее большинство локусов содержит аллели так называемого дикого типа с частотой очень близкой к единице. Кроме того, в генофонде популяции имеется небольшое число вредных аллелей, возникающих в результате мутаций и поддерживаемых естественным отбором на очень низком уровне. В соответствии с этими представлениями, типичная особь из популяции является гомозиготной почти по всем локусам и лишь в нескольких локусах может быть гетерозиготной. Эволюция происходит благодаря тому, что время от времени в результате мутации появляется какой-то удачный аллель, частота которого под действием естественного отбора постепенно увеличивается. Это приводит к тому, что новый аллель постепенно становится: аллелем дикого типа, полностью или почти полностью вытесняя аллель старого дикого типа.[14]Согласно балансовой модели часто не существует какого-то одного аллеля дикого типа. Во многих, а может быть, и в большинстве локусов присутствует целый ряд аллелей с различными частотами. Из чего следует, что составляющие популяцию особи гетерозиготны по этим аллелям в значительной части локусов. При этом какой-либо "нормальный", или "идеальный" генотип отсутствует. Популяция представляет из себя совокупность множества генотипов, различающихся по многим локусам и тем не менее в большинстве своем удовлетворительно приспособленных к тем условиям, с которыми приходится этой популяции сталкиваться. В рамках балансовой гипотезы эволюция представляется процессом одновременного постепенного изменения частот и типов аллелей во многих локусах. Аллели действуют не изолированно друг от друга: влияние того или иного аллеля на приспособленность организма зависит от присутствия или отсутствия в его генотипе других аллелей. Однако балансовая модель, подобно классической, признает, что многие мутантные аллели, безусловно вредны для их обладателей. Эти вредные мутации элиминируются или поддерживаются при низкой частоте путем естественного отбора, хотя играют лишь второстепенную негативную роль в эволюции.Многолетние исследования свидетельствуют, что особи любой популяции оказываются высоко гетерозиготными. Популяция состоит не из гомозиготного "дикого" типа особей с редкими мутациями, а из особей, каждая из которых несет какие-то вновь возникшие аллели по ряду локусов и является высокогетерозиготной по большинству других локусов. Важнейшим свойством гетерозиготных особей оказываются их повышенная жизнеспособность по сравнению с гомозиготами по данному признаку.В гетерозиготном состоянии в любой популяции находится множество скрытых генных мутаций (в том числе летальных и полулетальных). При этом спектр аллелей (аллелофонд) каждой популяции оказался — при достаточно большом числе изученных аллелей — уникальным, свойственным только данной популяции. Эта постоянно скрытая в генофонде популяции изменчивость с эволюционной точки зрения может рассматриваться как мобилизационный резерв, определяя быструю реакцию популяции (посредством преимущественного размножения особей тех или иных генотипов) на разнообразные изменения среды обитания.[1]Значительная сложность характерна и для фенотипического проявления различных генных мутаций: любой мутантный признак характеризуется разной в разных условиях пенетрантностью — частотой проявления в популяции, и разной экспрессивностью — степенью выраженности признака у данной особи. В мобилизационный резерв популяции входят не только рецессивные аллели, скрытые в гетерозиготном состоянии, но и многие доминантные и полудоминантные аллели, имеющие низкую пенетрантность и экспрессивность.Основные выводы о природе генетической структуры популяций :1)Длительное поддержание определенной частоты аллеля всегда связано с действием отбора, только на короткое время на небольших участках частоты аллелей в природных группировках могут определяться случайными причинами (эффектом основателя, дрейфом генов).Пример. Наземная улитка Cepaea nemoralis имеет три типа окраски раковины (желтая, коричневая, розовая) и 7 вариантов полосатости (от отсутствия полос до 6 отчетливых полос), генетически детерминированных немногими генами. Исследования за последние 25 лет тысяч поселений и сотен тысяч особей этой улитки в разных странах Европы обнаружили популяции с практически всеми возможными сочетаниями отмеченных признаков.В соседних биотопах такие границы определяются воздействием хищников, например дрозды Turdus ericetorum, истребляющего преимущественно тех улиток, окраска которых более заметна.2)Фенотипы всегда адаптивны.Например. Оказалось также, что частоты полосатых раковин могут сохраняться, с одной стороны, крайне долго (несколько тысяч лет, как показывают раскопки), а с другой стороны, могут существенно меняться за десятки лет. Последнее явление совпало с изменением характера растительности. Обнаружились и физиологические различия между морфами: желтые и коричневые в теплое и сухое лето откладывают яиц достоверно меньше, чем розовые.В масштабе всего ареала наблюдается заметное увеличение доли желтых форм с севера на юг, что объясняется влиянием климатических условий. Так коричневые улитки, оказались связанными с более прохладными микрообитаниями в силу их большей холодоустойчивости.С середины 30-х годов внимание исследователей дрозофил привлекло явление полиморфизма в строении хромосом: на гигантских хромосомах слюнных желез можно было сравнивать у разных особей измененное в процессе кроссинговера расположение отдельных, точно определяемых участков хромосом. Специальные исследования показали, что все инверсии оказались связанными с разной жизнеспособностью особей в разных условиях существования.3)В популяциях часто наблюдается фенотипического параллелизма — сходного проявления наследственных признаков у разных таксономически близких видов и в разных популяциях одного вида.4)По составу аллелей близко расположенные популяции могут отличаться так же резко, как популяции географически удаленные.5)Состав и относительные концентрации различных мутаций могут значительно меняться в одной популяции на протяжении даже нескольких поколений. При этом мутации, присутствовавшие вначале в наибольшей концентрации, не исчезают, тогда как редкие мутации могут исчезать и вновь появляться.6)Популяции могут значительно различаться по динамике генетической структуры.Так, при изучении инверсионного полиморфизма разных видов дрозофил оказалось, что, по-видимому, существуют два типа популяций: в одних частоты инверсий сохраняются с высокой стабильностью, в других обнаруживаются изменения по сезонам и в разных популяциях. Первый тип генетической структуры популяции характерен для Drosophila melanogaster и D. obscura, второй — для D. pseudoobscura.7)Поддержание высокого уровня полиморфизма часто определяется системой скрещиванием особей.Например, ассортативное скрещивание (преимущественное спаривание особей одной и той же морфы) усложняет генетическую структуру популяции и является важным аспектом поддержания полиморфизма. Заслуживает внимания обнаруженное у нескольких видов жуков-листоедов рода Chrysochloa, ассортативное скрещивание по признаку размера тела (предпочитают спариваться одинаковые по размеру особи).[14]Особенности популяционной структура популяций растений обусловлены их способностью к вегетативному размножению.-Однотипность генотипов на значительных площадях. Широко известны клональные группы деревьев в популяциях тополей и осин рода Populus. Подсчеты показали, что один клон осины Р. tremuloides занимал территорию 40 га и содержал около 47000 особей. Несмотря на то что осина способна размножаться и семенами, внутри группы клональных особей доля прорастающих семян ничтожна, и, по подсчетам некоторые такие клоны существуют уже на протяжении до 8000 лет. При изучении многолетнего злака Festucca rubra в Шотландии было обнаружено, что его популяции всегда состоят лишь из нескольких генотипов, которые распространились путем клонирования. Самый крупный клон занимал пространство диаметром 220 м (обычно на 1 га было представлено несколько разных клонов). Отмечается, что расчетная длительность существования клонов и у этого вида должна быть не меньше многих сотен лет.Резкие границы между фенотипами внутри популяции. В популяциях растений, распространенных в нескольких биогеоценозах, на границе этих биогеоценозов часто наблюдается резкий перепад в частотах тех или иных признаков. Эти случаи показывают, что устойчиво разные направления отбора внутри популяции и у растений могут быть фактором поддержания внутрипопуляционной генетической структуры.-Широкое распространение автогамии (самооплодотворения), агамоспермии (образования семян без оплодотворения),полиплоидии, анеуплоидии и естественной гибридизации определяет возможность нахождения в популяциях растений большого числа генетически различных групп особей. Факты, касающиеся генетической структуры популяций в ряде групп организмов (как и оставшийся за пределами этого рассмотрения материал), позволяют определить некоторые общие особенности популяции как генетической системы.При рассмотрении популяции в какой-то данный момент времени оказывается:1.Любая популяция подразделена на небольшие, устойчивые лишь на протяжении коротких периодов времени (не более одного-двух поколений), обычно пространственно различные группировки, состоящие из генетически тесно связанных между собой особей. Популяционная подразделенность — такой же всеобщий феномен, как индивидуальная изменчивость.2.Генетическая структура (по составу генотипов и частотам аллелей) таких группировок оказывается уникальной. Уникальным оказывается и генофонд (точнее — аллелофонд) любой такой группировки, вплоть до популяционной.3.Даже близкорасположенные внутрипопуляционные группировки могут значительно отличаться друг от друга по частотам определенных аллелей, и, напротив, сходные частоты аллелей могут быть обнаружены для очень далеких группировок.4.Все внутрипопуляционные группы в каждом поколении связаны между собой потоками аллелей, однако точная количественная характеристика этих связей остается задачей будущих исследований. Этот поток аллелей является такой же важной частью общей генетической структуры популяции, как и внутрипопуляционные группы.5.Важной особенностью генетической структуры популяции оказывается система скрещивания, при этом обычно ассортативное скрещивание любого рода усложняет общую генетическую структуру популяции, а инбридинг упрощает.При рассмотрении популяции на протяжении какого-то периода времени оказывается, что;6.Генетический состав внутрипопуляционных группировок оказывается лабильным, при этом степень лабильности связана с масштабом группировок: наиболее лабильным в пространстве и времени оказывается состав наиболее мелких группировок. Кратковременные различия частот могут определяться разными факторами (в том числе случайным распределением генотипов), тогда как устойчивые различия всегда определяются естественным отбором.7.Единство внутрипопуляционных группировок основано на генетическом родстве большинства входящих в них особей. Сходство генетической конструкции индивидуумов в популяции (как и сходство целых популяционных аллелофондов) является мерой их общего происхождения.8.В целой популяционной системе частоты одних аллелей оказываются стабильными, других — крайне лабильными. Как правило, лабильными по частоте оказываются более редкие аллели. Не исключено, что стабильные по частоте на протяжении многих поколений аллели отражают какие-то более важные структурные особенности генетической структуры популяции.9.На динамике генетического состава популяций во времени сказывается прежде всего действие всех элементарных эволюционных факторов.10.Особенности подразделения популяционного ареала на более или менее изолированные мелкие участки могут сказаться на скорости и характере распределения разных аллелей в популяции при более гомогенной структуре населения аллель может распространиться без резких пространственных перепадов и значительно медленнее.11.Генетическая структура популяции оказывается очень разнообразной. Возможно, что идея Ф.Г. Добржанского о существовании двух типов генетических популяционных систем — жестком и лабильном, по мере накопления данных получит дальнейшее развитие (более стабилизированными могут быть популяции в центре ареала, а менее стабилизированными — популяции на географической и экологической периферии).12.Генетическая структура популяции всегда оказывается адаптированной к тому многомерному экологическому пространству, которое формирует данная популяция. В генетической структуре популяции скрыта первооснова возможности приспособления любой природной популяции. Знаменательно, что во всех первоначально предполагавшихся случаях устойчивого изменения частот аллелей под влиянием дрейфа генов впоследствии выяснилось ведущее действие естественного отбора.[14]Генетическая структура популяции — это не только количественное соотношение частот аллелей и частот генотипов, но и характер подразделенности населения популяции на группы генетически близких животных, и характер связи между этими группами (поток аллелей) в пространстве и времени. Она обеспечивает взаимодействие особей внутри популяции.Без определенного уровня внутрипопуляционных контактов популяция не сможет выполнять как свои видовые функции (размножение, расселение), так и функции, связанные с участием в экосистеме (участие в круговоротах веществ, создание биологической продукции).3.Характеристика мутационного процесса как элементарного фактора эволюции.Для осуществления пусковых механизмов эволюции необходимо наличие групп факторов. Прежде всего необходимо наличие факторов, поставляющих в популяцию новый элементарный эволюционный материал. Одним из таких факторов является мутационный процесс. Понятие о мутационном процессе. Элементарным эволюционным материалом в эволюции являются мутации, процесс же возникновения мутаций представляет собой мутационный процесс. Постоянно идущий в природе мутационный процесс ведёт к изменению в популяции частоты одного аллеля по отношению к другому. Мутационный процесс является основным механизмом наследственной изменчивости. Значительная часть (от нескольких до десятков процентов) особей в популяции – это носители вновь возникших мутаций.Мутации сами по cебе не имеют адаптивного значения, а большинство их, поскольку они нарушают нормальное развитие, вредны. Немногие полезные мутации и их комбинации подхватываются отбором и включаются в перестройку вида, породы, сорта. Этим определяется их важное эволюционное значение. В результате распространения мутаций и их комбинаций в популяциях и повышения их концентрации (насыщенности) они дифференцируют вид, приобретают значение диагностического, таксономического признака, включаются в сферу действия естественного отбора, который усиливает генетические различия между особями и их группами "выводит" такие изменения на эволюционную арену.Таким образом, элементарное эволюционное явление - длительное (сказывающееся на протяжении жизни многих поколений) и направленное изменение генофонда популяции, т.е. относительно стабильное изменение частоты аллеля. Элементарное эволюционное явление - еще не эволюция, но без генетических изменений в популяции невозможно ни начало, ни само протекание эволюционного процесса. —факторы (причины) эволюции согласно СТЭ — это мутационный процесс, различные виды изоляции, популяционные волны, дрейф генов и естественный отбор.Мутационный процесс - один из важных элементарных факторов эволюции.Значение его обусловливается тем, что постоянное возникновение спонтанных мутаций и их комбинаций при скрещиваниях дает новые сочетания генов и мутаций, что неизбежно вызывает наследственные изменения в популяции.Но сам мутационный процесс, повышающий генетическую гетерогенность популяций, без участия других факторов эволюции не может направлять изменение природной популяции. Он является лишь поставщиком элементарного эволюционного материала, резерва наследственной изменчивости.Большинство мутаций первоначально оказывает на фенотип особей неблагоприятное действие, однако, будучи рецессивными, мутантные аллели обычно присутствуют в генофондах популяций в гетерозиготных по соответствующему локусу генотипах. Благодаря этому достигается тройственный положительный результат:
  • Исключается непосредственное отрицательное влияние мутантного аллеля на фенотипическое выражение признака, контролируемого данным геном;
  • Путем сохранения аллелей, не имеющих приспособительной ценности в настоящих условиях существования, но могущих приобрести такую ценность в будущем или при освоении новых экологических ниш, создается резерв наследственной изменчивости;
  • Благодаря явлению гетерозиса (гибридной мощности) многие мутации, неблагоприятные по их прямому фенотипическому выражению, в гетерозиготном состоянии нередко повышают относительную жизнеспособность организмов.
  • Мутационный процесс, выполняя роль элементарного эволюционного фактора, происходит постоянно на протяжении всего периода существования жизни, а отдельные мутации возникают многократно у разных организмов. Генофонды популяций испытывают непрерывное давление мутационного процесса. Это компенсирует высокую вероятность потери в ряду поколений единичной мутации.Популяционные волны, или колебания численности особей популяции - "волны жизни"(С. С. Четвериков) - периодические или апериодические колебания численности организмов в природных популяциях, которые распространяются на все виды животных и растений, а также на микроорганизмы. Причины колебаний часто имеют экологическую природу - различные факторы биотической и абиотической среды.Популяционные волны - это эффективный фактор преодоления генетической инертности природных популяций. Вместе с тем их действие на генофонды не является направленным, поэтому они, так же как и мутационный процесс, подготавливают эволюционный материл к действию других элементарных эволюционных факторов.Эволюционное значение популяционных волн состоит в том, что при резком сокращении численности особей популяции среди случайно оставшихся в живых немногочисленных индивидов могут быть редкие генотипы. В дальнейшем восстановление численности будет идти за счет этих особей, что приведет к изменению частот генов, а значит, генофонда популяции, пережившей катастрофическое сокращение численности.Таким образом, популяционные волны можно рассматривать как поставщика эволюционного материала.[11] Изоляция - ограничение свободы скрещиваний (панмиксии) орагнизмов. Как фактор эволюции изоляция важна в том отношении, что при возникновении барьеров, ограничивающих панмиксию, размножение идет в пределах изолята в результате увеличения доли близкородственных скрещиваний, что приводит к прекращению обмена генетической информацией с другими группами. Это обусловливает закрепление начальной стадии дифференциации, консолидации специфического генофонда обособившейся группы и становление ее как самостоятельной генетической системы. Таким образом, изоляции принадлежит важная роль в образовании популяций, в формировании видов. Однако при чрезмерном дроблении ареала может наблюдаться исчезновение вида. В зависимости от природы факторов ограничения различают пространственную и биологическую изоляцию.Пространственная изоляция - наиболее распространенный способ территориального разобщения популяций или групп популяций. Причинами ее могут быть географические факторы (горные хребты, водные преграды, места или биоценозы, неблагоприятные для жизни вида, разделение расстоянием, ограничение "радиуса индивидуальной активности" и др. барьеры) - географическая изоляция.Так, на Гавайских островах популяции наземных улиток занимают долины, разделенные невысокими гребнями, преодоление которых моллюсками затрудняет сухость почвы и редколесье. Выраженная, хотя и не полная изоляция в течение многих поколений привела к ощутимым различиям фенотипов улиток из разных долин. В горах острова Оаху, например, один из видов улиток (Аchatinella mustelina) представлен более чем сотней рас, выделяемых по морфологическим признакам. У "береговой" рыбы бельдюги (Zoarces viviparus) в зависимости от места обитания (устье или конец фиорда) уменьшается число позвонков и лучей некоторых плавников. Сохранение изменчивости объясняется оседлым образом жизни бельдюги. Такая изменчивость наблюдается и у подвижных видов животных, например перелетных птиц с гнездовым консерватизмом. Так, молодь ласточек возвращается с зимовки на место своего рождения и гнездится в радиусе до 2 км от материнского гнезда, поэтому скрещивания у ласточек ограничиваются группой близко селящихся особей. Биологическая изоляция возникает вследствие внутривидовых различий организмов и имеет несколько форм. Экологическая изоляция. К экологической изоляции приводят особенности окраски покровов или состава пищи. Так, в Молдавии есть две несмешивающихся популяции мышей - желтогорлая лесная мышь и степная. Фактором разделения их служит состав пищи. Разобщение популяций способствовало выявлению и усилению особенностей фенотипа степных мышей - они мельче и имеют иную форму черепа. В описанном примере экологическая изоляция дополняется территориальной. Длительная экологическая изоляция способствует дивергенции популяций вплоть до образования новых видов. Так, предполагают, что человеческая и свиная аскариды, морфологически сходные, произошли от общего предка. Их расхождению, согласно одной из гипотез, способствовал запрет на употребление человеком в пищу свиного мяса, который по религиозным соображениям распространялся длительное время на значительные массы людей. Этологическая изоляция - возникает в результате психо-физиологических и поведенческих различий партнеров в период размножения. Она существует благодаря нюансам ритуала ухаживания, окраски, запахов, "пения" самок и самцов из разных популяций. Так, подвиды щеглов - седоголовый (Carduelis carduelis carduelis) и черноголовый (С. с. brevirostris) имеют выраженные отметины на голове. Серые вороны (Corvus corone cornix) из крымской и североукраинской популяций, внешне неразличимые, отличаются карканьем.o Морфофизиологическая изоляция - возникает в результате несоответствия в строении и функции половых аппаратов или просто разница в размерах тела. У растений к этой форме изоляции ведет приспособление цветка к определенному виду опылителей.[10] Временная (сезонная) изоляция происходит при изменении сроков размножения, сдвигах жизненного цикла изолирующихся полиморфных групп. Этим ослабляются или устраняются конкурентные отношения между разобщающимися популяциями. Очевидно, такая изоляция имела важное значение в формировании озимых и яровых форм растений, рыб. Сезонные расы, выделяемые по месту и времени икрометания, описаны у лососевых, осетровых, карповых рыб.Описанные формы изоляции, особенно в начальный период их действия, снижают, но не исключают полностью межпопуляционные скрещивания. Генетическая изоляция - создает непреодолимые барьеры скрещивания, возникает в результате несовместимости генетических систем - гамет, хромосом из-за полиплоидии или массивных хромосомных перестроек, резко изменяющих хромосомные наборы гамет мутантов по сравнению с исходными формами. Полиплоидия распространена среди растений. Разные виды плодовой мухи нередко различаются хромосомными перестройками. Гибриды от скрещивания близкородственных форм со сниженной жизнеспособностью известны для серой и черной ворон. Указанный фактор изолирует популяции этих птиц в Европе.Чаще генетическая изоляция развивается вторично вследствие углубления морфологических различий организмов из популяций, длительно разобщенных другими формами изоляции. В первом случае генетическая изоляция предшествует дивергенции признаков и начинает процесс видообразования, во втором - она его завершает. Изоляция в процессе видообразования взаимодействует с другими элементарными эволюционными факторами. Она усиливает генотипические различия, создаваемые мутационным процессом и генетической комбинаторикой. Возникающие благодаря изоляции внутривидовые группировки отличаются по генетическому составу и испытывают неодинаковое давление отбора.[11]  Мутационный процесс – элементарный фактор эволюции (генетическая комбинаторика, мутации и обезвреживание их в эволюции, не направленность). Значение мутационного процесса как эволюционного фактора. Мутационный процесс - постоянно действующий элементарный эволюционный фактор, оказывающий давление на популяции. Мутационный процесс приводит к изменению в популяции частоты одного аллеля по отношению к другому. Хотя по каждому отдельному гену давление мутационного процесса обычно невелико, при наличии большого числа геновв организме оно оказывает заметное действие на генетичскую структуру популяции (в сочетании с генетической комбинаторикой). Мутационный процесс и его результат, возникновение мутаций, носит вероятностный и статистический характер . Спонтанный мутационный процесс характеризуется определёнными чертами. В виду относительно высокой стабильности хромосом частота возникновения отдельных определённых мутаций всегда относительно низка (10-4 – 10-9), по каждому отдельному гену давление мутационного процесса невелико. Но в связи с большим числом генов и хромосом общая частота всех возникающих мутаций относительно высока. Следовательно, мутационный процесс оказывает заметное действие на генетическую структуру популяции (в сочетании с генетической комбинаторикой), вполне ощутимое давление на популяцию. Мутационный процесс, являясь источником наследственной изменчивости, не может однако направлять эволюционные изменения. Во-первых, мутационный процесс является случайным, возникают самые разнообразные мутации, изменяющие исходные признаки и свойства в различных направлениях, осуществляя в классической форме «неопределённую изменчивость» Ч.Дарвина. [5]Такая не направленность мутационного процесса делает весьма невероятной возможность его направляющего влияния на протекание эволюционных изменений. Во-вторых, давление мутационного процесса, хотя и вполне ощутимо, но относительно невелико, имеются давления других факторов, перекрывающие давление мутационного процесса. Мутационный процесс неизбежно ограничен онтогенетическими возможностями каждой формы организмов. Относительно высокая стабильность генотипов организмов к внешним воздействиям делает невозможным и направляющее влияние условий среды на ход эволюционных изменений. Значит, по всем своим основным свойствам мутационный процесс не является фактором, способным оказывать направляющее влияние на процесс эволюции. Статистичность и не направленность спонтанного мутационного процесса подтверждается результатами экспериментов. Установлено, что действие даже самых специфических мутагенов всегда даёт спектр разнообразных мутаций. Мутационный процесс как фактор, поддерживающий высокую степень гетерогенности природных популяций, фактор – поставщик элементарного эволюционного материала. Эволюционное значение мутационного процесса определяется прежде всего тем, что он постоянно поддерживает высокую степень гетерогенности природных популяций – основу для действия других факторов эволюции и прежде всего естественного отбора. Поскольку мутационный процесс приводит к возникновению мутаций, то он является поставщиком элементарного эволюционного материала. Мутационный процесс ведёт к возникновению части того «резерва» наследственной изменчивости, который определит в будущем возможность приспособления популяций к тем или иным изменениям условий среды. Груз мутаций, пополняемый мутационным процессом, — это цена, которую «платит» популяция за возможность сохранения в изменённых условиях, приобретения новых признаков и свойств и освоения ранее не доступных условий существования. В общем, мутационный процесс является постоянно действующим элементарным эволюционным фактором, оказывающим давление на популяцию.[10] Эволюционное значение мутационного процесса поддерживает высокую гетерогенность природных популяций, участвует в создании разнообразных аллелей и появлении новых генов, создаёт весь спектр изменчивости данного генофонда (совокупность всех реально возможных мутаций данной популяции), а также носит случайный и ненаправленный характер. В результате постоянных скрещиваний в популяции возникает множество новых сочетаний аллелей. Это генетическая комбинаторика многократно изучает значение мутаций. Они входят в новые геномы, оказываются в разной генотипической среде. Потенциальное число таких комбинаций имеющегося генетического материала в любой популяции невообразимо велика, но реализуется лишь ничтожная часть из этого теоретически возможного числа вариантов. Реально осуществлённая часть комбинаций определяет то, что практически любая особь оказывается генетически уникальной. Это важно для действия естественного отбора. Мутации- элементарный эволюционный материал. Особенности проявления мутаций- экспрессивность (степень фенотипической выраженности) и пенетрантность (честота фенотипических проявлений аллеля определённого гена в популяции, независимо от степени проявления. Природные популяции насыщены различными мутациями. Обезвреживание мутаций. Диплоидный генотип, гетерозиготное состояние, молчащая ДНК - ловушка для мутаций. Вырожденность генетического кода, редкость возникновений мутаций - репарация. Мутации должны с определённой достаточной частотой возникать у всех живых организмов, вызывая изменения, выводящие на новый уровень и встречаются в разных концентрациях. Часть должна выходить на историческую арену эволюции, участвуя в образовании новых таксонов. Мутации возникают скачкообразно, дискретно, без переходов. Однажды появившаяся мутация устойчива и предаётся потомкам. Это возникает не направленно. Одна и та же мутация может неоднократно повторяться. Мутации поставляют богатый материал для эволюционного процесса, поэтому они рассматриваются как элементарный эволюционный материал.[9]В биологии элементарное эволюционное явление представляет собой это процесс длительного направленного изменения генофонда популяций, который в перспективе может привести (но может и не привести!) к формированию нового вида или подвида. Как установили учёные, элементарное эволюционное явление возникает, когда на элементарный эволюционный материал воздействуют эволюционные факторы. Причём эти факторы могут быть как природного характера (например, изменение климата в регионе), так и техногенного. Источником техногенных воздействий выступает человечество, в результате деятельности которого наша планета постепенно меняется.одно из основных свойств популяции — генетическая гетерогенность. Даже недавно возникшие клоны и чистые линии очень скоро под давлением мутационного процесса становятся гетерогенными смесями. Эта гетерогенность определяется не только постоянным давлением мутационного процесса, но в большей степени комбинаторикой, рекомбинацией генотипов в процессе перекрестного скрещивания. При отсутствии давлений со стороны среды или сохранении постоянства условий генетический состав популяций, слегка флуктуируя, будет оставаться в среднем статистически неизменным долгое время.Если же популяция испытывает сильное давление со стороны каких-либо внешних факторов, то неизбежно произойдет изменение генотипического состава популяции. Оно, как будет показано ниже, возможно благодаря отбору, дрейфу генов, накоплению селективно нейтральных мутаций и другим процессам. Однако эволюционно значимым окажется не флуктуация около среднего значения, а длительное изменение генофонда. Если изменение генофонда окажется не только длительным, но и векторизованным (направленным) и необратимым, то можно говорить о происходящем эволюционно значимом событии — элементарном эволюционном явлении. Элементарное эволюционное явление — длительное, необратимое и векторизованное изменение популяционного генофонда.Элементарное эволюционное явление — еще не эволюционный процесс. Однако без изменения генотипического состава популяции немыслимо протекание любого эволюционного процесса, начиная от самого мелкого до самого крупного масштаба. Пока хорошо изученных примеров элементарных эволюционных явлений немного. Одним из них является изменение числа абдоминальных щетинок у дрозофилы (рис. 9.1).Рис. 9.1. Пример возникновения элементарного эволюционного явления при искусственном отборе по числу абдоминальных щетинок в эксперименте с Drosophila melanogaster (по П. Эрлиху и Р. Холму, 1966). Пунктир — линия без отбора; а — вымерла из-за стерильности потомства. Отбор на увеличение (1) и уменьшение (2) числа щетинок в течение 30 поколений привел к возникновению линий с разными признаками (разным числом щетинок, I—III)Устойчивое изменение генотипического состава популяции возникает лишь в результате естественного отбора (см. гл. 10) — единственно известного направляющего фактора эволюции. Подчеркнем еще раз, что элементарное эволюционное явление — не кратковременная флуктуация, а достаточно длительное изменение генотипического состава популяции, переход одного генотипического равновесия в другое. Видимо, уже на этом самом низком эволюционном уровне процесс эволюции оказывается необратимым.3. Онтогенез – основа филогенеза. Онтогенетическая дифференцировка.развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих. В развитии легких у млекопитающих также обнаруживается рекапитуляция только ранних стадий предков, позднее морфогенез идет по-новому. 3. Архаллаксисы — изменения, обнаруживающиеся на уровне зачатков и выражающиеся в нарушении их расчленения, ранних дифференцировок или в появлении принципиально новых закладок. Классическим примером архаллаксиса является развитие волос у млекопитающих, закладка которых наступает на очень ранних стадиях развития и с самого начала отличается от закладок других придатков кожи позвоночных.По типу архаллаксиса возникают хорда у примитивных бесчерепных, хрящевой позвоночник у хрящевых рыб, развиваются нефроны вторичной почки у пресмыкающихся.Ясно, что при эволюции за счет анаболий в онтогенезах потомков полностью реализуется основной биогенетический закон, т.е. происходят рекапитуляции всех предковых стадий развития. При девиациях ранние предковые стадии рекапитулируют, а более поздние заменяются развитием в новом направлении. Архаллаксисы полностью не допускают рекапитуляции в развитии данных структур, изменяя сами их зачатки.Если сопоставить схему филэмбриогенезов (рис. 1) с таблицей К. Бэра, иллюстрирующей закон зародышевого сходства, то станет понятно, что Бэр уже был очень близок к открытию филэмбриогенезов, но отсутствие эволюционной идеи в его рассуждениях не позволило более чем на 100 лет опередить научную мысль.Рис. 1. Преобразования онто- и филогенеза в связи с возникающими филэм- бриогенезами.Буквами обозначены этапы онтогенеза, цифрами — филэмбриогенетические преобразования.В эволюции онтогенеза наиболее часто встречаются анаболии как филэмбриогенезы, лишь в малой степени изменяющие целостный процесс развития. Девиации как нарушения морфогенетического процесса в эмбриогенезе часто отметаются естественным отбором и наблюдаются поэтому значительно реже. Наиболее редко в эволюции проявляются архаллаксисы в связи с тем, что они изменяют весь ход эмбриогенеза, и если такие изменения затрагивают зачатки жизненно важных органов или органов, имеющих значение эмбриональных организационных центров, то часто они оказываются несовместимыми с жизнью.В одной и той же филогенетической группе эволюция в разных системах органов может происходить за счет разных филэмбриогенезов.Так, в онтогенезе млекопитающих прослеживаются все этапы развития осевого скелета в подтипе позвоночных (анаболии), в развитии сердца рекапитулируют лишь ранние стадии (девиация), а в развитии придатков кожи рекапитуляции вообще отсутствуют (архаллаксис). Знание типов филэмбриогенезов в эволюции систем органов хордовых необходимо врачу для прогнозирования возможности возникновения у плодов и новорожденных врожденных пороков развития атавистической природы. Действительно, если в системе органов, эволюционирующих путем анаболий и девиаций, возможны атавистические пороки развития за счет рекапитуляции предковых состояний, то в случае архаллаксисов это исключается полностью.Кроме ценогенезов и филэмбриогенезов в эволюции онтогенеза могут обнаруживаться еще и отклонения времени закладки органов — гетерохронии — и места их развития — гетеротопии. Как первые, так и вторые приводят к изменению взаимосоответствия развивающихся структур и проходят жесткий контроль естественного отбора. Сохраняются лишь те гетерохронии и гетеротопии, которые оказываются полезными. Примерами таких адаптивных гетерохроний являются сдвиги во времени закладок наиболее жизненно важных органов в группах, эволюционирующих по типу арогенеза. Так, у млекопитающих, и в особенности у человека, дифференцировка переднего мозга существенно опережает развитие других его отделов.Гетеротопии приводят к формированию новых пространственных и функциональных связей между органами, обеспечивая в дальнейшем их совместную эволюцию. Так, сердце, располагающееся у рыб под глоткой, обеспечивает эффективное поступление крови в жаберные артерии для газообмена. Перемещаясь в загрудинную область у наземных позвоночных, оно развивается и функционирует уже в едином комплексе с новыми органами дыхания — легкими, выполняя и здесь в первую очередь функцию доставки крови к дыхательной системе для газообмена.Гетерохронии и гетеротопии в зависимости от того, на каких стадиях эмбриогенеза и морфогенеза органов они проявляются, могут быть расценены как филэмбриогенезы разных типов. Так, перемещение зачатков головного мозга, приводящее к его изгибу, характерному для амниот, и проявляющееся на начальных этапах его дифференцировки, является архаллаксисом, а гетеротопия семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования, — типичная анаболия.Иногда процессы гетеротопии, одинаковые по результатам, могут являться филэмбриогенезами разных типов. Например, у различных классов позвоночных очень часто встречается перемещение поясов конечностей. У многих групп рыб, ведущих придонный образ жизни, брюшные плавники (задние конечности) располагаются кпереди от грудных, а у млекопитающих и человека плечевой пояс и передние конечности в дефинитивном состоянии находятся значительно кау- дальнее места их первоначальной закладки. В связи с этим иннервация плечевого пояса у них осуществляется нервами, связанными не с грудными, а с шейными сегментами спинного мозга. У упомянутых выше рыб брюшные плавники иннервируются нервами не задних туловищных, а передних сегментов, расположенных кпереди от центров иннервации грудных плавников. Это свидетельствует о гетеротопии закладки плавников уже на стадии самых ранних зачатков, в то время как перемещение переднего пояса конечностей у человека происходит на более поздних этапах, когда иннервация их уже полностью осуществлена. Очевидно, в первом случае гетеротопия представляет собой архаллаксис, в то время как во втором — анаболию.Ценогенезы, филэмбриогенезы, а также гетеротопии и гетерохронии, оказавшись полезными, закрепляются в потомстве и воспроизводятся в последующих поколениях до тех пор, пока новые адаптивные изменения онтогенеза не вытеснят их, заменив собой. Благодаря этому онтогенез не только кратко повторяет эволюционный путь, пройденный предками, но и прокладывает новые направления филогенеза в будущем.Список литературы.1.Айала Ф., Кайгер Дж. Современная генетика, тт. 1–3, М., 1988 Фогель Ф., Мотульски А. Генетика человека, тт. 1–3. М., 19902.Баранов В.С., Иващенко Т.Э., Исаев М.В. Молекулярные основы наиболее частых моногенных болезней // Геномика - медицине. Научное издание / под ред. В.И. Иванова, Л.Л. Киселева. - М.: Академкнига, 2005. - С. 74-99.3.Билева Дж.СНехромосомная наследственность // Генетика / под ред. В.И. Иванова: учебник для вузов. - М.: Академкнига, 2006. - С. 273-290. 4.Иорданский Н.Н. Основы теории эволюции. М., «Просвещение», 1979. 5. Иорданский Н. Н. Развитие жизни на Земле. М. 1979.6. Иорданский Н.Н. Эволюция жизни. - М.: Академия, 20017. Кемп П., Армс К. Введение в биологию. Пер с англ., М., «Мир», 1988.8. Киселева Э.А. Книга для чтения по дарвинизму. М., «Просвещение», 1970.9. Ламарк Ж.Б. Философия зоологии. - М.: Наука, 1971.10. Ливанов Н. А. Пути эволюции животного мира. М„ 1955.11. Северцов, А.Н. Главные направления эволюционного процесса. Морфобиологическая теория эволюции / А.Н. Северцов. - Москва: Огни, 2017. 960 c.12. Северцов, А.Н. Главные направления эволюционного процесса: морфобиологическая теория эволюции / А.Н. Северцов. - М.: Либроком, 2012. - 617 c.13. Северцов, А.С. Основы теории эволюции / А.С. Северцов. - М.: Книга по Требованию, 2012. - 320 c. 14.Тимофеев-Ресовский Н.В., Яблоков А.В., Глотов Н.В. Очерк учения о популяции. М., 197315. Эльконин Борис Горизонты изучения онтогенеза; ERGO - Москва, 2012. - 688 c.16. Яшин А. А. Живая материя. Онтогенез жизни и эволюционная биология; ЛКИ - Москва, 2010. - 240 c.